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Basic Idea of Social Experiments Approach

◮ A program is implemented as a field experiment.

◮ Individuals can volunteer for the program provided they satisfy
certain eligibility criteria.

◮ The group of volunteers is randomly split into a group of
individuals, who actually receive the treatment (treatment
group) and a group of individuals for whom treatment is
denied (control group).

◮ The difference in the mean outcome between treatment and
control group estimates the average treatment effect on the
treated ∆TT .
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Social Experiment without Randomization

Consider a regression of Y on D, where D = 1 indicates voluntary
participation and D = 0 voluntary non-participation. This yields
the naive comparison between treated and untreated (equivalent to
nonexperimental design):

Y = DY1 + (1 − D)Y0

= µ0 + (µ1 − µ0)D + ω

= α + β ∗ D + ω

where: ω = ε0 + (ε1 − ε0) ∗ D

α = µ0 β = µ1 − µ0 = ∆ATE
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Social Experiment without Randomization

Naive Group Comparison:

∆n = E [Y | D = 1] − E [Y | D = 0]

= β + S0

where: S0 = E [ε0| D = 1] − E [ε0| D = 0] (Selection Bias)

4



Social Experiment without Randomization

Least Squares Estimation:

β̂LS =

∑

i(Di − D̄)(Yi − Ȳ )
∑

i(Di − D̄)2
= Ȳ1 − Ȳ0

Since the observations are iid distributed, least squares estimates
asymptotically:

plim
n→∞

β̂LS = plim
n→∞

Ȳ1 − Ȳ0

= E [Y | D = 1] − E [Y | D = 0]

6= β
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Selection Bias

Recall the selection problem when comparing the mean outcomes
for the treated and the untreated:

E [Y | D = 1] − E [Y | D = 0]
︸ ︷︷ ︸

Differences in means

= E [Y1| D = 1] − E [Y0| D = 0]

= E [Y1 − Y0| D = 1]
︸ ︷︷ ︸

ATT

+ {E [Y0| D = 1] − E [Y0| D = 0]}
︸ ︷︷ ︸

BIAS

◮ Random assignment of units to the treatment forces the
selection bias to be zero

◮ The treatment and control group will tend to be similar along
all characteristics (including Y0)
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Identification in Randomized Experiments

◮ Randomization implies:

(Y1, Y0) independent of D, or (Y1, Y0) ⊥ D.

◮ We have that E [Y0| D = 1] = E [Y0| D = 0] and therefore

∆ATT = E [Y1 − Y0| D = 1] = E [Y | D = 1] − E [Y | D = 0]

◮ Also, we have that

∆ATE = E [Y1 − Y0] = E [Y1 − Y0| D = 1] = E [Y | D = 1] − E [Y | D = 0]

◮ As a results,

E [Y | D = 1] − E [Y | D = 0]
︸ ︷︷ ︸

Differences in means

= ∆ATE = ∆ATT
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Identification in Randomized Experiments

◮ The identification result extends beyond average treatment
effects.

◮ Given random assignment (Y1, Y0) ⊥ D:

FY0
(y) = Pr [Y0 ≤ y ] = Pr [Y0 ≤ y |D = 0 ]

= Pr [Y ≤ y |D = 0 ]

◮ Similarly,

FY1
(y) = Pr [Y ≤ y |D = 1 ]

◮ So effect of the treatment at any quantile, Qθ(Y1) − Qθ(Y0)
is identified.

◮ Randomization identifies the entire marginal distributions of
Y0 and Y1

◮ Does not identify the quantiles of the effect:Qθ(Y1 − Y0) (the
difference of quantiles is not the quantile of the difference)
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Estimation in Randomized Experiments

◮ Consider a randomized trial with N individuals. Suppose that
the estimand of interest is ATE:

∆ATE = E [Y1 − Y0] = E [Y | D = 1] − E [Y | D = 0]

◮ Using the analogy principle, we construct an estimator:

∆̂ATE = Ȳ1 − Ȳ0

where

Ȳ1 =

∑

i YiDi
∑

i Di

=
1

N1

∑

i∈Di=1

Yi ;

Ȳ0 =

∑

i Yi(1 − Di)
∑

i(1 − Di)
=

1

N0

∑

i∈Di=0

Yi

with N1 =
∑

i Di and N0 = N − N1

◮ ∆̂ATE is an unbiased and consistent estimator of ∆ATE
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Testing in Large Samples: Two Sample t-Test
◮ Notice that:

∆̂ATE − ∆ATE
√

σ̂2
1

N1
+

σ2
0

N0

d−→ N(0, 1)

where

σ̂2
1 =

1

N1 − 1

∑

i∈Di=1

(Yi − Ȳ1)
2

and σ̂2
0 is analogously defined.

◮ In particular, let

t =
∆̂ATE

√

σ̂2
1

N1
+

σ2
0

N0

.

We reject the null hypothesis H0 : ∆ATE = 0 against the
alternative H1 : ∆ATE 6= 0 at the 5% significance level if
|t| > 1.96.

10



Testing in Small Samples: Fisher’s Exact Test

◮ Test of differences in means with large N:

H0 : E [Y1] = E [Y0] , H1 : E [Y1] 6= E [Y0]

◮ Fisher’s Exact Test with small N:

H0 : Y1i = Y0i , ∀i = 1, . . . , N, H1 : ∃isuch thatY1i 6= Y0i

◮ Let Ω be the set of all possible randomization realizations.

◮ We only observe the outcomes, Yi , for one realization of the
experiment. We calculate ∆̂ = Ȳ1 − Ȳ0.

◮ Under the sharp null hypothesis we can calculate the value
that the difference of means would have taken under any
other realization, ∆̂(ω), for ω ∈ Ω.
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Testing in Small Samples: Fisher’s Exact Test
Suppose that we assign 4 individuals out of 8 to the treatment:

Yi 12 4 6 10 6 0 1 1

Di 1 1 1 1 0 0 0 0 ∆̂ = 6

∆̂(ω)

ω = 1 1 1 1 1 0 0 0 0 6
ω = 2 1 1 1 0 1 0 0 0 4
ω = 3 1 1 1 0 0 1 0 0 1
ω = 4 1 1 1 0 0 0 1 0 1.5

... · · ·
...

ω = 70 0 0 0 0 1 1 1 1 -6

◮ The randomization distribution of ∆̂ (under the sharp null hypothesis) is
Pr
[
∆̂ ≤ z

]
= 1

70

∑

ω∈Ω
1{∆̂(ω) ≤ z}

◮ Now, find z̄ = inf{z : Pr
[
|∆̂| > z

]
≤ 0.05}

◮ Reject the null hypothesis, H0 : Y1i − Y0i = 0 for all i , against the
alternative hypothesis H1 : Y1i − Y0i 6= 0 for some i , at the 5%
significance level if |∆̂| > z̄
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Testing in Small Samples: Fisher’s Exact Test
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Covariate Balance

◮ Randomization balances observed but also unobserved
characteristics between treatment and control group

◮ Can check random assignment using so called “balance tests”
(e.g., t-tests) to see if distributions of the observed covariates,
X , are the same in the treatment and control groups

◮ Compute normalized differences for each covariate:

∆X =
X̄1 − X̄0
√

S2
0 + S2

1

where Sd is the sample variance of Xi in the subsample with
treatment Di = d .

◮ Imbens and Rubin discuss rules-of-thumb. Normalized
differences above about .25 should raise flags.

◮ X are pre-treatment variables that are measured prior to
treatment assignment (i.e., at “baseline”)
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Experimental Design: Relative Sample Sizes for Fixed N

◮ Suppose that you have N experimental subjects and you have
to decide how many will be in the treatment group and how
many in the control group. We know that:

Ȳ1 − Ȳ0 ∼
(

µ1 − µ0,
σ2

1

N1
+

σ2
0

N0

)

.

◮ We want to choose N1 and N0, subject to N1 + N0 = N, to
minimize the variance of the estimator of the average
treatment effect.

◮ The variance of Ȳ1 − Ȳ0 is:

V
[

Ȳ1 − Ȳ0

]

=
σ2

1

pN
+

σ2
0

(1 − p)N

where p = N1/N is the proportion of treated in the sample.
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Experimental Design: Relative Sample Sizes for Fixed N

◮ Find the value p∗ that minimizes V
[

Ȳ1 − Ȳ0

]

:

− σ2
1

p∗2N
+

σ2
0

(1 − p∗)2N
= 0

◮ Therefore:

(1 − p∗)

p∗
=

σ0

σ1
,

and

p∗ =
σ1

σ1 + σ0
=

1

1 + σ0/σ1

◮ A “rule of thumb” for the case σ0 ≈ σ1 is p∗ = 0.5

◮ For practical reasons it is sometimes better to choose unequal
sample sizes (even if σ0 ≈ σ1)
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Experimental Design: Power Calculations to Choose N

◮ Recall that for a statistical test:
◮ Type I error: Rejecting the null if the null is true.
◮ Type II error: Not rejecting the null if the null is false.

◮ Size of a test is the probability of type I error, usually 0.05.

◮ Power of a test is one minus the probability of type II error,
i.e. the probability of rejecting the null if the null is false.

◮ Statistical power increases with the sample size.

◮ But when is a sample “large enough”?

◮ We want to find N such that we will be able to detect an
average treatment effect of size ∆ or larger with high
probability.
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Experimental Design: Power Calculations to Choose N

◮ Assume a particular value, α, for µ1 − µ0.

◮ Let ∆̂ = Ȳ1 − Ȳ0 and

s.e.(∆̂) =

√

σ2
1

N1
+

σ2
0

N0
.

◮ For a large enough sample, we can approximate:

∆̂ − ∆

s.e.(∆̂)
∼ N(0, 1).

◮ Therefore, the t-statistic for a test of significance is:

t =
∆̂

s.e.(∆̂)
∼ N(

∆

s.e.(∆̂)
, 1)
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Probability of Rejection if µ1 − µ0 = 0
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Probability of Rejection if µ1 − µ0 = ∆
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Experimental Design: Power Calculations to Choose N

◮ The probability of rejecting the null µ1 − µ0 = 0 is:

Pr [|t| > 1.96] = Pr [t < −1.96] + Pr [t > 1.96]

= Pr

[

t − ∆

s.e.(∆̂)
< −1.96 − ∆

s.e.(∆̂)

]

+ Pr

[

t − ∆

s.e.(∆̂)
> 1.96 − ∆

s.e.(∆̂)

]

= Φ

(

−1.96 − ∆

s.e.(∆̂)

)

+

(

1 − Φ

(

1.96 − ∆

s.e.(∆̂)

))

◮ Suppose that p = 1/2 and σ2
1 = σ2

0 = σ. Then,

s.e.(∆̂) =

√

σ2

N/2
+

σ2

N/2

=
2σ√

N
.
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Power Functions with p = 1/2 and σ1 = σ0
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General formula for the power function (p 6= 1/2, σ1 6= σ0)

Pr [reject µ1 − µ0 = 0 |µ1 − µ0 = ∆] =

Φ



−1.96 − ∆

/√

σ2
1

pN
+

σ2
0

(1 − p)N





+



1 − Φ



1.96 − ∆

/√

σ2
1

pN
+

σ2
0

(1 − p)N









To choose N we need to specify:

1. ∆: minimum detectable magnitude of treatment effect

2. Power value (usually 0.80 or higher)

3. σ2
1 and σ2

0 (usually σ2
1 = σ2

0) (e.g., using previous measures)

4. p: proportion of observations in the treatment group If
σ2

1 = σ2
0 , then the power is maximized by p = 0.5
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Should We use Regression Adjustment with Randomized

Assignment?

◮ If the treatment Di is independent of (Y1i , Y0i ), then we know
that the simply difference in means is an unbiased and
consistent estimator of ∆ATE = ∆ATT . But if we have
covariates, should we add them to the regression?

◮ If we focus on large-sample analysis, the answer is yes,
provided the covariates help to predict (Y1i , Y0i). Remember,
randomized assignment means Di is also independent of Xi .

◮ Consider the case where the treatment effect is constant, so
(Y1i − Y0i) = ∆i for all i . Then we can write

Yi = Y0i +∆Di = µ0 +∆Di + νi0

and Di is independent of Y0i and therefore νi0.
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Should We use Regression Adjustment with Randomized

Assignment?

◮ Simple regression of Yi on 1, Di is unbiased and consistent for
∆.

◮ But writing the linear projection

Y0i = α0 + X ′
i β0 + u0i

E [u0i ] = 0, E [Xiu0i ]

we have

Yi = α0 +∆Di + X ′
i β0 + u0i

where, by randomized assignment, Di is uncorrelated with Xi

and u0i .

◮ So OLS is still consistent for ∆. If β0 6= 0, V [u0i ] < V [ν0i ],
and so adding Xi reduces the error variance.
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Should We use Regression Adjustment with Randomized

Assignment?

◮ In fact, under the constant treatment effect assumption and
random assignment, the asymptotic variances of the simple
and multiple regression estimators are, respectively,

V [ν0i ]

Nρ(1 − ρ)
,

V [u0i ]

Nρ(1 − ρ)

where ρ = Pr [D = i = 1]

◮ The only caveat is that if E [Y0i | Xi ] 6= α0 + X ′
i β0 then the

OLS estimator of ∆ is only guaranteed to be consistent, not
unbiased. This distinction can be relevant in small samples
(as often occurs in true experiments).
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Should We use Regression Adjustment with Randomized

Assignment?

◮ If the treatment effect is not constant, and now we add the
linear projection Y1i = α1 + X ′

i β1 + u1i , so that

∆ATE = ∆ = (α1 − α0) + µ′
X (β1 − β0)

we can write

Yi = α0 +∆Di + X ′
i β0 + (Xi − µX )

′(β1 − β0) + u0i + Di(u1i − u0i)

≡ α0 +∆Di + X ′
i β0 + Di(Xi − µX )

′δ + u0i + Diei

with δ ≡ β1 − β0 and ei ≡ u1i − u0i

◮ Under random assignment of treatment, (ei , Xi) is
independent of Di , so Di is uncorrelated with all other terms
in the equation.

◮ OLS is consistent for ∆ but it is generally biased unless the
equation represents E [Yi | Di , Xi ].
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Example: The LaLonde (1986) Study

Major Questions:

◮ How good are non-experimental estimates?

◮ Do they come close to the estimates from randomized field
experiments?

◮ How robust are the nonexperimental estimators w.r.t. sample
choices?
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NSW-Program

”The National Supported Work Demonstration (NSW) was a
temporary employment program designed to help disadvantaged
workers lacking basic job skills move into the labor market by
giving them work experience and counseling in a sheltered
environment. Unlike other federally sponsored employment and
training programs, the NSW program assigned qualified applicants
to training positions randomly. Those assigned to the treatment
group received all the benefits of the NSW program, while those
assigned to the control group were left to fend for themselves.”
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NSW-Program

◮ collected in the mid-1979’s by the Manpower Demonstration
Research Corporation (MDRC)

◮ US wide, 10 different sites

◮ AFDC women, ex-drug addicts, ex-criminal offenders, high
school drop-out of both sexes

◮ specific program length between 9 to 18 month depending on
target group and site

◮ NSW counsellor for group of 3-5 people in treatment group

◮ reasonable enumeration (but lower than market wage)

◮ background data for treatment and control group
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Figure 1: Sample means and standard deviations of pre-training earnings and
other characteristics for the NSW AFCD and male participants.

Note: The numbers shown in parentheses are the standard deviations and those in the square brackets are the
standard errors.(LaLonde, 1986, p.606)
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Figure 2: Annual Earnings of NSW Treatments, Controls, and Eight Candidate
Comparison Groups from the PSID and the CPS-SSA

Note: aThe Comparison Groups are defined as follows: PSID-1: All female household heads continuously from
1975 through 1979, who were between 20 and 55-years-old and did not classify themselves as retired in 1975;
PSID-2: Selects from the PSID-1 group all women who received AFDC in 1975; PSID-3: Selects from the PSID-2
all women who were not working when surveyed in 1976; PSID-4: Selects from the PSID-1 group all women with
children, none of whom are less than 5-years-old; CPS-SSA -1: All females from Westat CPS-SSA sample;
CPS-SSA -2: Selects from CPS-SSA-1 all females who received AFDC in 1975; CPS-SSA-3: Selects from
CPS-SSA-1 all females who were not working in the spring of 1976; CPS-SSA -4: Selects from CPS-SSA-2 all
females who were not working in the spring of 1976.
b All earnings are expressed in 1982 dollars. The numbers in parentheses are the standard errors. For the NSW
treatments and controls, the number of observations refer only to 1975 and 1979. In the other years there are fewer
observations, especially in 1978. At the time of the resurvey in 1979, treatments had been out of Supported Work
for an average of 20 months.(LaLonde, 1986, p.607)
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Figure 3: Annual Earnings of NSW Male Treatments, Controls, and Six Candidate
Comparison Groups from the PSID and the CPS-SSA

Note: a The Comparison Groups are defined as follows: PSID-1: All male household heads continuously from 1975
through 1978, who were less than 55-years-old and did not classify themselves as retired in 1975; PSID-2: Selects
from the PSID-1 group all men who were not working when surveyed in the spring of 1976; PSID-3: Selects from
the PSID-1 group all men who were not working when surveyed in either spring of 1975 or 1976; CPS-SSA-1: All
males based on Westat’s criteria, except those over 55-years-old; CPS-SSA-2: Selects from CPS-SSA-1 all males
who were not working when surveyed in March 1976; CPS-SSA-3: Selects from the CPS-SSA-1 unemployed males
in 1976 whose income in 1975 was below the poverty level.
b All earnings are expressed in 1982 dollars. The numbers in parentheses are the standard errors. The number of
observations refer only to 1975 and 1978. In the other years there are fewer observations. The sample of
treatments is smaller than the sample of controls because treatments still in Supported Work as of January 1978
are excluded from the sample, and in the young high school target group there were by design more controls than
treatments. (LaLonde, 1986, p.608)
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Figure 4: Earnings Comparisons and Estimated Training Effects for the NSW
AFCD Participants Using Comparison Groups from the PSID And The CPS-SSAa,b

Note: a The columns above present the estimated training effect for each econometric model and comparison
group. The dependent variable is earnings in 1979. Based on the experimental data, an unbiased estimate of the
impact of training presented in col. 4 is $851. The first three columns present the difference between each
comparison group’s 1975 and 1979 earnings and the difference between the pre-training earnings of each
comparison group and the NSW treatments.
b Estimates are in 1982 dollars. The numbers in parentheses are the standard errors.
c The exogenous variables used in the regression adjusted equations are age, age squared, years of schooling, high
school dropout status, and race.
d See Table 2 for definitions of the comparison groups. (LaLonde, 1986, p.609)
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Figure 5: Earnings Comparisons and Estimated Training Effects for the NSW
Male Participants Using Comparison Groups from the PSID And The CPS-SSAa,b

Note: a The columns above present the estimated training effect for each econometric model and comparison
group. The dependent variable is earnings in 1978. Based on the experimental data an unbiased estimate of the
impact of training presented in col. 4 is $886. The first three columns present the difference between each
comparison group’s 1975 and 1978 earnings and the difference between the pre-training earnings of each
comparison group and the NSW treatments.
b Estimates are in 1982 dollars. The numbers in parentheses are the standard errors.
c The exogenous variables used in the regression adjusted equations are age, age squared, years of schooling, high
school dropout status, and race.
d See Table 3 for definitions of the comnarison arouns. (LaLonde, 1986, p.610)

35



Example: Job Training Partnership Act (JTPA)

◮ Largest randomized training evaluation ever undertaken in the
U.S.; started in 1983 at 649 sites throughout the country

◮ Sample: Disadvantaged persons in the labor market
(previously unemployed or low earnings)

◮ D: Assignment to one of three general service strategies
◮ classroom training in occupational skills
◮ on-the-job training and/or job search assistance
◮ other services (eg. probationary employment)

◮ Y : earnings 30 months following assignment

◮ X : Characteristics measured before assignment (age, gender,
previous earnings, race, etc.)
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Example: Job Training Partnership Act (JTPA)

Exhibit 5: Impacts of Total 30-Month Earnings: Assignees an
Enrollees, by target group

Mean Earnings Impact per assignee

Treatments Control As a (2) Impact per
Group Group In dollars percent enrollee in

(1) (2) (3) of (2) dollars

Adult Woman $13,417 $12,241 $1,178∗∗∗ 9.6% $1,837∗∗∗

Adult Men 19,474 18,496 987∗ 5.3 1,599∗

Female Youth 10,241 10,106 135 1.3 20
Male youth non-arrestees 15,786 16,375 0.589 -3.6 -868
Male youth arrestees

Using Survey data 14,633 18,842 -4,209∗∗ 22.3 -6,804∗∗

Using scaled UI data 14,148 14,152 -4 0 -6

Sources: Estimates based on Frst and Second Follow-up Survey responses and earnings data from
state unemployment insurance (UI) agencies
Sample size: adult women, 6,102; adult men, 5,102; female youths, 2,657; male youth non-arrestees,
1,704; male youth arrestees, 416.
∗ Statistically significant at the 10% level, ∗

∗ 5% level, ∗
∗ ∗ 1% level (two tailed test).
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Application

Eligibility Determination (A)

Assessment

Service Strategy Assignment (B)

Classroom
Training

Subgroup
↓

Random
Assignment

Treatment
Group

Control
Group

OJT/JSA
Subgroup

↓

Random
Assignment

Treatment
Group

Control
Group

Other
Services

Subgroup
↓

Random
Assignment

Treatment
Group

Control
Group

⇓

Treatment Completion
⇓

Program Impact
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Assessing the Case for Social Experiments (Heckman &

Smith (1995), J.Ec.Persp.’95)

Reservations against LaLonde’s Study

- richer data improve nonexperimental estimates

- exploitation of longitudinal information

- more advanced nonexperimental estimators available

- battery of specification test reduce bias of nonexperimental
estimates (Heckman&Hotz JASA ’89)

- experience: linear approaches can be ruled out (e.g. DiD)

- LaLonde’s results cannot be generalized
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Potential Problems when Running Experiments (Heckman

& Smith (1995), J.Ec.Persp.’95)

1. Randomization Bias
”Randomization bias occurs when random assignment causes
the type of persons participating in a program to differ from
the type that would participate in the program as it normally
operates.” (Heckman & Smith (1995), J.Ec.Persp., p.99)

- existence on selection based randomization may effect
participants’ behavior positively or negatively

- change of participants’ behavior due to threat of denial
- Randomization may reduce overall participation (Kramer &

Shapiro, JAMA ’85 for drug trials)
- rarely additional nonexperimental evidence
- Little empirical evidence on randomization bias (exception

JTPA)
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Potential Problems when Running Experiments

◮ ρi = Y1i − Y0i is treatment effect of individual i .

◮ ρ∗ is the average treatment effect.

◮ ρ+ is the cutoff value above which people participate in the
experiment.

◮ ρTT is the treatment effect on the treated which is measured
in the experiment

◮ ρTU is the treatment effect on the untreated which is not
measured as those people would not participate.

41



Figure 6: Percent of Training Centers Citing Specific Concerns about Participating
in the Experiment

Source: Based on the responses of 228 JTPA training centers connected about possible participation in the
National JTPA Study (Doolittle and Traeger, 1990, Table 2.1, p. 34)
Notes: Concerns noted by fewer than 5 percent of the training centers are not listed. Percentages may add to more
than 100 because training centers could raise more than one concern. (Heckman & Smith, 1995, p. 101)
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Potential Problems when Running Experiments

2. Administrative Limitations on Social Experiments

- voluntary participation of training sites
- complicated administrative process until final placement to

specific program
- often multiple and sequential treatments
- alternative points at which randomization can take place have

different merits (Heckman & Smith ’93)
- complexity if welfare programs
- non-random selection by officers in charge of the program
- uneven attrition particular if pre-treatment phase and/or

treatment phase is long an
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Potential Problems when Running Experiments

3. Substitution Bias
”Substitution bias arises when members of an experimental
control group gain access to close substitutes for the
experimental treatment, like similar services offered by other
providers or the same service offered under different funding
arrangements.” (Heckman & Smith (1995), J.Ec.Persp.,
p.105)

- Control group outcome is different from untreated state
- Control group members may seek substitutes for treatment.
- This would bias estimated treatment effects downwards.
- Can also occur if the experiment frees up resources that can

now be concentrated on the control group.
- Example JTPA: 32 % of control group received treatment from

other resources during treatment period, 48 % of the treated
really received treatment (self reports)

- Arises often in clinical trial if treatment was denied
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Figure 1: Controls and Treatments Percent in School or Training, Female Youth

Note: 1. Month ‘t’ is the month of random assignment for the controls and treatments. Bars indicate confindence
bands.
2. The monthly training information graphed here is derived from self-reported data on spells of schooling and
training (Heckman & Smith, 1995, p. 107)
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Potential Problems when Running Experiments

4. Hawthorne Effect
Do participants behave differently because they know that the
program is an experiment?
see Burtles&Orr (1986), Heckman&Smith (1995)

5. The Ethical Issue

- Can we deny treatment randomly for those who are eligible?
Do we have the right to deny a potentially beneficial
treatment?

- Can we collect confidential data from those who are not
treated?

But given rationing is necessary due to expenditure restriction:
A random assignment is a fair (the best ?) way of rationing.
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Potential Problems when Running Experiments

6. Little Evidence on Many Questions of Interest

- What are the effects of factors such as subsidies, local labor
markets, advertising, gender, race on the participation decision
?

- How do administrative rules effect participation?
- What are the effects of factors such as subsidies, local labor

markets, advertising, gender, race on the drop out decision ?
- What are the effects and costs of various treatments ?
- How does the length of the program effect treatment ?
- How does the treatment work for other non-eligible groups ?
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Potential Problems when Running Experiments

7. Other Possible Issues

- The long delays often associated with experimental evaluations
- Attrition from experimental samples (Hausman & Wise, 1985)
- The inability of small-scale experiments to predict general

equilibrium effects or to produce results that can be
extrapolated to other populations (Zellner & Rossi, 1986)
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Example of Large Randomized Experiment: Tennessee

Project STAR

The Effect of Class Size on Educational Achievement:

◮ Krueger (1999) econometrically re-analyses a randomized
experiment of the effect of class size on student achievement.

◮ The project is known as Tennessee Student/Teacher
Achievement Ratio (STAR) and was run in the 1980s.

◮ 11,600 students and their teachers were randomly assigned to
one of three groups

◮ Small classes (13-17) students.
◮ Regular classes (22-25) students.
◮ Regular classes (22-25) students with a full time teacher’s aide.

◮ After the assignment, the design called for students to remain
in the same class type for four years.

◮ Randomization occurred within schools.
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Regression Analysis of Experiments
Conditional Treatment Effects in Terms of a Regression Model,
cont’d

◮ With randomization one could simply compare mean
outcomes of treatment and control group to obtain the causal
effect of the treatment.

◮ Nonetheless, it is often useful to analyze experimental data
with regression analysis.

◮ To see this, let’s start with the assumption of constant
treatment effects (i.e. the treatment affects everyone by the
same magnitude). Y1i − Y01 = ∆

◮ We can therefore rewrite Yi = Y0i + (Y1i − Y01)Di as:

Yi = α
︸︷︷︸

=E[Y01]

+ ∆
︸︷︷︸

=(Y1i −Y01)

Di + ηi
︸︷︷︸

=Y01−E[Y01]

(1)

where ηi is random part of Y01.

◮ Regression (1) could therefore be estimated to obtain the
causal effect of D.
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Regression Analysis of Experiments

◮ The conditional expectation of (1) with treatment status
switched on and off gives:

E [Yi | Di = 1] = α +∆+ E [ηi | Di = 1]

E [Yi | Di = 0] = α + E [ηi | Di = 0]

◮ So that

E [Yi | Di = 1] − E [Yi | Di = 0] =

∆
︸︷︷︸

Treatment Effect

+E [ηi | Di = 1] − E [ηi | Di = 0]
︸ ︷︷ ︸

Selection Bias

◮ In the STAR experiment Di (being in a small class) is
randomly assigned and therefore the selection bias disappears.
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Why Include Additional Controls?

◮ To evaluate experimental data one may want to add
additional controls in the regression. Instead of estimating
equation (1) one would estimate:

Yi = α +∆Di + X ′
i γ + ηi

◮ There are 2 main reasons for including additional controls in
the regression model.

◮ Conditional random assignment. sometimes randomization is
done conditional on some observables (here at the school
level).

◮ Additional controls increase precision. Although the control
variables Xi are uncorrelated with Di they may have
substantial explanatory power for Yi . Including controls thus
reduces residual variance and therefore lowers the standard
errors of the regression estimates.
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Regression in Krueger (1999)

◮ Krueger estimates the following econometric model:

Yics = β0 + β1SMALLcs + β2REG/Acs + β3Xics + αs + εisc

◮ Yics =percentile score.
◮ SMALLcs =Indicator whether student was assigned to a small

class.
◮ REG/Acs =Indicator whether student was assigned to a regular

class with aide.
◮ α =School FE. Because random assignment occurred within

schools.
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Regression Results Kindergarten

◮ Krueger estimates the following econometric model:

Yics = β0 + β1SMALLcs + β2REG/Acs + β3Xics + αs + εisc

◮ Yics =percentile score.
◮ SMALLcs =Indicator whether student was assigned to a small

class.
◮ REG/Acs =Indicator whether student was assigned to a regular

class with aide.
◮ α =School FE. Because random assignment occurred within

schools.
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Regression Results Kindergarten

Explanatory OLS: Actual Class Size

Variables A. Kindergarten

Small Class 4.82 5.37 5.36 5.37
(2.19) (1.26) (1.21) (1.19)

Regular/aide class 0.12 0.29 0.53 0.31
(2.23) (1.13) (1.09) (1.07)

White/Asian (1=yes) - - 8.35 8.44
(1.35) (1.36)

Girl (1=yes) - - 4.48 4.39
(0.63) (0.63)

Free lunch (1=yes) - - -13.15 -13.07
(0.77) (0.77)

White teacher - - - -0.57
(2.10)

Teacher Experience - - - 0.26
(0.10)

Master’s degree -0.51
(1.06)

School FE No Yes Yes Yes

R2 0.01 0.25 0.31 0.31
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Regression Results First Grade

Explanatory OLS: Actual Class Size

Variables B. First Grade

Small Class 8.57 8.43 7.91 7.4
(1.97) (1.21) (1.17) (1.18)

Regular/aide class 3.44 2.22 2.23 1.78
(2.05) (1.00) (0.98) (0.98)

White/Asian (1=yes) - - 6.97 6.97
(1.18) (1.19)

Girl (1=yes) - - 3.8 3.85
(0.56) (0.56)

Free lunch (1=yes) - - -13.49 -13.61
(0.87) (0.87)

White teacher - - - -4.28
(1.96)

Male Teacher - - - 11.82
(3.33)

Teacher Experience 0.05
(0.06)

Master’s degree 0.48
(1.07)

School FE No Yes Yes Yes

R2 0.02 0.24 0.3 0.3
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Problem 1: Attrition

A Common Problem in Randomized Experiments:

◮ If attrition is random and affects the treatment and control
groups in the same way the estimates would remain unbiased.

◮ Here the attrition is likely to be non-random: especially good
students from large classes may have enrolled in private
schools creating a selection bias problem.

◮ Krueger addresses this concern by imputing test scores (from
their earlier test scores) for all children who leave the sample
and then reestimates the model including students with
imputed test scores.
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Regression Results Imputing Test Scores to Address

Attrition

Actual and imputed
Actual test data test data

Coefficient Coefficient
on small Sample on small Sample

Grade class dum. size class dum. size

K 5.32 5900 5.32 5900
(0.76) (0.76)

1 6.95 6632 6.3 8328
(0.74) (0.68)

2 5.59 6282 5.64 9773
(0.76) (0.65)

3 5.58 6339 5.49 10919
(0.79) (0.63)

◮ Non-random attrition hardly biases the results.
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Problem 2: Students changed Classes After Random

Assignment

Example Transitions between Grades 1 and Grade 2:

Second Grade

Small Regular Reg/Aide All

F
ir

st
G

ra
d
e Small 1435 23 24 1482

Regular 152 1498 202 1852
Aide 40 115 1560 1715

All 1627 1636 1786 5049
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Problem 2: Students changed Classes After Random

Assignment

◮ Subjects moved between treatment and control groups.

◮ A common solution to this problem is to use initial assignment
(here initial assignment to small or regular classes) as an
instrument for actual assignment (more on Instrumental
Variable methods in lecture 2).

◮ Krueger reports reduced form results where he uses initial
assignment and not current status as explanatory variable.

◮ In Kindergarten OLS and reduced form are the same because
students remained in their initial class for at least one year.

◮ From grade 1 onwards OLS (column 1-4) and reduced form
(columns 5-8) are different.
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Problem 2: Students changed Classes After Random

Assignment

Explanatory OLS: actual class size Reduced form: initial class size

Variable (1) (2) (3) (4) (5) (6) (7) (8)
B. First grade

Small class 8.57 8.43 7.91 7.40 7.54 7.17 6.79 6.37
(1.97) (1.21) (1.17) (1.18) (1.76) (1.14) (1.10) (1.11)

Regular/aide class 3.44 2.22 2.23 1.78 1.92 1.69 1.64 1.48
(2.05) (1.00) (0.98) (0.98) (1.12) (0.80) (0.76) (0.76)

White/Asian (1=yes) 6.97 6.97 6.86 6.85
(1.18) (1.19) (1.18) (1.18)

Girl(1=yes) 3.80 3.85 3.76 3.82
(0.56) (0.56) (0.56) (0.56)

Free lunc (1=yes) -13.49 -13.61 -13.65 -13.77
(0.87) (0.87) (0.88) (0.87)

White teacher -4.28 -4.40
(1.96) (1.97)

Male teacher 11.82 13.06
(3.33) (3.38)

Teacher experience 0.05 0.06
(0.06) (0.06)

Master’s degree 0.48 0.63
(1.07) (1.09)

School FE No Yes Yes Yes No Yes Yes Yes

R2 0.02 0.24 0.30 0.30 0.01 0.23 0.29 0.30
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How to Write a Good Experimental Paper?1

◮ Advising on how to write good papers is very difficult in any
setup.

◮ It seems to become more difficult to publish experimental
papers which simply randomize a certain treatment and
evaluate its effect.

◮ A promising avenue for experimental papers seem to be the
ones that combine experimental data with economic theory:

1. Discriminating between important theories.
2. First obtain “reduced form” results of a causal effect and then

use structural econometrics to disentangle economic
mechanisms.

3. Use an experiment to estimate externalities or other market
failures.

◮ In the following we will review another paper with particularly
nice links between empirics and theory.

1The following part is mostly based on lecture slides by Fabian Waldinger62



Miguel and Kremer (2004) - Worms

◮ Miguel and Kremer study the impact of a treatment against
intestinal worms in primary school in rural Kenya.

◮ Intestinal worms affect one in four people worldwide and are
particularly prevalent among school-age children in developing
countries.

◮ Prevalence of Intestinal Worms
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Estimating Externalities

◮ Studies in which treatment is randomized at the individual
level may potentially obtain biased treatment effects because
of externalities:

1. Externalities within treated schools.
2. Externalities across schools from treatment to control schools.

◮ While they investigate both types of externalities they only
have experimental variation to identify cross-school
externalities (within school externalities have to be evaluated
differently).

◮ They evaluate a Kenyan programme where randomization
occurred at the school level which allows them to look at
externalities.

◮ They evaluate the effect of the de-worming treatment on
health, school absenteeism, and test scores.
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Estimating Externalities
◮ Overall 75 schools were treated in 3 groups. The health

intervention was phased in sequentially:
1. Group 1 schools: received free deworming treatment in 1998

and 1999.
2. Group 2 schools: in 1999.
3. Group 3 school: in 2001.

Year Treatment Control

1998 1 2;3
1999 1;2 3

◮ Treatment schools received half yearly (or yearly for different
worms) treatment and medical education of how to avoid
worm infection.

◮ Even in treated schools not all children received treatment
mostly because of school absence on the treatment day.

◮ Because some students switched schools they use initial
assignment to evaluate the programme (intention-to-treat;
equivalent to RF in Krueger, 1999)
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Summary Statistics
Group 1 Group 2 Group 3 Group 1- Group 2-

(25 schools) (25 schools) (25 schools) Group 3 Group 3

Panel A: Pre-school to Grade 8
Male 0.53 0.51 0.52 0.01 -0.01

(0.02) (0.02)
Proportion girls < 13 years, 0.89 0.89 0.88 0.00 0.01

and all boys (0.01) (0.01)
Grade progression -2.1 -1.9 -2.1 -0.0 0.1
(=Grade-(Age-6)) (0.1) (0.1)

Year of birth 1986.2 1986.5 1985.8 0.4∗∗ 0.8∗∗∗

(0.2) (0.2)
Panel B: Grades 3 to 8

Attendance recorded in school 0.973 0.963 0.969 0.003 -0.006
registers (during the four weeks (0.004) (0.004)

prior to the pupil survey)
Access to latrine at home 0.82 0.81 0.82 0 -0.01

(0.03) (0.03)
Have livestock (cows, goats, pigs, 0.66 0.67 0.66 0 -0.01

sheep) at home (0.03) (0.03)
Weight-for-age Z-score (low -1.39 -1.4 -1.44 0.05 0.04

scores denote undernutrition) (0.05) (0.05)
Blood in stool (self-reported) 0.26 0.22 0.19 0.07∗∗ 0.03

(0.03) (0.03)
Sick often (self-reported) 0.1 0.1 0.08 0.02∗∗ 0.02∗∗

(0.01) (0.01)
Malaria/fever in past week 0.37 0.38 0.4 -0.03 -0.02

(self-reported) (0.03) (0.03)
Clean (observed by field workers) 0.6 0.66 0.67 -0.07∗∗ -0.01

(0.03) (0.03)

Despite random assignment: Group 1 schools seem to be slightly worse off
before treatment (would underestimate treatment effects).
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Summary Statistics - Intestinal Infections

Prevalence of Prevalence of Average infection
infection moderate-heavy intensity, in eggs

infection per gram (s.e)

Hookworm 0.77 0.15 426
(1055)

Roundworm 0.42 0.16 2337
(5156)

Schistosomiasis, all schools 0.22 0.07 91
(413)

Schistosomiasis, 0.8 0.39 487
schools< 5 km from Lake Victoria (879)
Whipworm 0.55 0.1 161

(470)
At least one infection 0.92 0.37

Born since 1985 0.92 0.4
Born before 1985 0.91 0.34
Female 0.91 0.34
Male 0.93 0.38

At least two infections 0.31 0.1
At least three infections 0.28 0.01
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Econometric Specification

◮ Randomization of deworming treatment across schools allows
estimation of the overall effect of the programme by comparing
treatment and comparison schools even if there are within-school
externalities. (To decompose direct deworming and within school
externality they must rely on non-experimental methods).

◮ Externalities also occur across schools because children from the
same farm often attend different schools.

◮ They estimate cross-school externalities by taking advantage of
variation in the local density of treatment schools introduced by
randomization.

Yitj = α + β1Treatment(Year1)it + β2Treatment(Year2)it + X ′

ijtδ

+
∑

d

(
γdNT

dit

)
+
∑

d

(φd Ndit) + ui + eijt (2)

Xijt is a vector of control variables (to increase statistical precision).
NT

dit is the number of pupils randomly assigned to treatment.
Ndit is the number of pupils at distance d from school i and year t.
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Econometric Specification

◮ Yitj = α+β1Treatment(Year1)it+β2Treatment(Year2)it+X ′
ijtδ

+
∑

d

(

γdNT
dit

)

+
∑

d (φdNdit) + ui + eijt (2)

◮ γd measures the extent of cross-school externalities

◮ β1 captures direct effect of deworming + within school
externalities on untreated children in treated schools for year 1

◮ β1 +
∑

d

(

γd N̄T
dit

)

is the average effect of deworming

treatment on overall infection prevalence in treatment schools
in year 1 (including cross school externalities from other
treated schools).

◮ If the authors were just after the total programme effect in
treated schools and cross school externalities they could
simply estimate equation (2).
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Econometric Specification - Within-School Externalities

◮ But the authors also want to quantify within school
externalities (on pupils in treated schools who do not get the
treatment).

◮ Given that the authors do not have within school
randomization they cannot estimate the within school
externality using experimental variation.

◮ They use a nice feature of the experimental setup (plus some
additional assumptions) to quantify within school externalities.

◮ They use the following idea:
Using data from the first year they compare the difference in
health outcomes for the following pupils:

◮ pupils in treated schools (group 1) who do not take up
treatment in year 1 to

◮ pupils in control schools (group 2) who will not take up
treatment in year 2
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Econometric Specification - Within-School Externalities

◮ To see this more formally: call D a dummy which indicates
whether an individual takes up treatment if it is offered in his
school.

◮ Assuming covariates X are the same in group 1 and group 2
schools we now focus on group 1 and 2 schools only.

◮ Group 1 gets treatment in 1998 group 2 in 1999; T = 1 if
treated in 1998.

◮ E [Yijt| T = 1, D = 0] − E [Yijt | T = 0, D = 0]

= β1 +
∑

d

[

E
[

NT
∣
∣
∣T = 1, D = 0

]

− E
[

NT
∣
∣
∣T = 0, D = 0

]]

+
∑

d φd [E [N| T = 1, D = 0] − E [N| T = 0, D = 0]]
+ [E [ε| T = 1, D = 0] − E [ε| T = 0, D = 0]]

◮ β1 is the within school externality effect.

◮ The second and third term are due to differing local densities
of primary schools between treatment and control and will be
close to 0 (they also control for those differences).

◮ The last term will also be close to 0.
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Econometric Specification - Within-School Externalities

◮ Group 1 and Group 2 pupils who missed their first year of
treatment can therefore be used to obtain an estimate of
within school externalities.

◮ The authors can estimate both within-school and cross school
externalities using equation (3):

Yijt = α + β1T1it + b1Dit + b2(T1it × Dit) + X ′
ijtδ

+
∑

d

(

γdNT
dit

)

+
∑

d

(φdNdit) + ui + eijt (3)

β1 is the within-school externality effect on the untreated.
β1 + b2 is within-school externality + direct effect on the
treated.
γd is the cross-school externality.
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Results - No Within-School Externalities

Any moderate-heavy
helminth infection, 1999

(1) (2)

Indicator for Group 1 (1998 Treatment) School -0.25∗∗∗ -0.12∗

(0.05) (0.07)
Group 1 pupils within 3 km (per 1000 pupils) -0.26∗∗∗ -0.26∗∗∗

(0.09) (0.09)
Group 1 pupils within 3-6 km (per 1000 pupils) -0.14∗∗ -0.13∗∗

(0.06) (0.06)
Total pupils within 3 km (per 1000 pupils) 0.11∗∗∗ 0.11∗∗∗

(0.04) (0.04)
Total pupils within 3-6 km (per 1000 pupils) 0.13∗∗ 0.13∗∗

(0.06) (0.06)
Received first year of deworming treatment, when -0.06∗

offered (1998 for Group 1, 1999 for Group 2) (0.07)
(Group 1 Indicator)*Received treatment, when offered -0.14∗

(0.07)

Equation (2)
no within-

school
externality
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Results - Including Within-School Externalities

Any moderate-heavy
helminth infection, 1999

(1) (2)

Indicator for Group 1 (1998 Treatment) School -0.25∗∗∗ -0.12∗

(0.05) (0.07)
Group 1 pupils within 3 km (per 1000 pupils) -0.26∗∗∗ -0.26∗∗∗

(0.09) (0.09)
Group 1 pupils within 3-6 km (per 1000 pupils) -0.14∗∗ -0.13∗∗

(0.06) (0.06)
Total pupils within 3 km (per 1000 pupils) 0.11∗∗∗ 0.11∗∗∗

(0.04) (0.04)
Total pupils within 3-6 km (per 1000 pupils) 0.13∗∗ 0.13∗∗

(0.06) (0.06)
Received first year of deworming treatment, when -0.06∗

offered (1998 for Group 1, 1999 for Group 2) (0.07)
(Group 1 Indicator)*Received treatment, when offered -0.14∗

(0.07)

Equation (3)
no within-

school
externality
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