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General Idea

◮ Find a “match” - or small number of “matches”- for each
individual from the opposite group.

◮ A match will be determined in terms of the similarities of the
observable characteristics.

◮ The matching estimators impute the missing potential
outcome by using average outcomes for individuals with
“similar” values for the covariates.
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Simple Matching Estimator (Abadie and Imbens (2002))

◮ Let lm(i) be the index l that satisfies Dl 6= Di and

∑

j|Dj 6=Di

1 {‖ Xj − Xi ‖≤‖ Xl − Xi ‖} = m,

◮ In other words, lm(i) is the index of the unit in the opposite
treatment group that is the m−th closest to unit i in terms of
the distance measure based on the norm ‖‖.

◮ l1(i) is the nearest match for unit i .
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Simple Matching Estimator: Distance Metric

◮ The usual distance metric is Standard Euclidian metric:

‖ Xj − Xi ‖=
√

(Xj − Xi)′(Xj − Xi) =

√

√

√

√

K
∑

k=1

(Xkj − Xki)2

where K is number of covariates.

◮ The Euclidean distance is not invariant to changes in the scale
of the X ’s.

◮ There are alternative distances that are invariant to changes
in scale.

◮ Mahalanobis distance:

‖ Xj − Xi ‖=
√

(Xj − Xi)′Σ−1
X (Xj − Xi ), where ΣX is

covariance matrix of the covariates
◮ Normalized Euclidean distance:

‖ Xj − Xi ‖=
√

(Xj − Xi)′diag(Σ−1
X )(Xj − Xi )
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Simple Matching Estimator

◮ Let JM(i) denote the set of indices for the first M matches
for unit i : JM(i) = {l1(i), . . . , lM(i)}

◮ Define the imputed potential outcomes as:

Ŷ0i =

{

Yi if Di = 0
1
M

∑

j∈JM (i)
Yj if Di = 1

and Ŷ1i =

{

1
M

∑

j∈JM (i)
Yj if Di = 0

Yi if Di = 1

◮ The simple matching estimator is then

∆̂sm
M =

1

N

N
∑

i=1

(

Ŷ1i − Ŷ0i

)
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Simple Matching Estimator

Table 1: A matching estimator with 7 observations,
m = 1 (matching with replacement)

i Di Xi Yi J1(i) Ŷ0i Ŷ1i

1 0 2 7 {5} 7 8

2 0 4 8 {4, 6} 8 7.5

3 0 5 6 {4, 6} 6 7.5

4 1 3 9 {1, 2} 7.5 9
5 1 2 8 {1} 7 8
6 1 3 6 {1, 2} 7.5 6
7 1 1 5 {1} 7 5
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Simple Matching Estimator

Asymptotic Properties of the M-Nearest Neighbor Matching
estimator for fixed K (see Abadie and Imbens (2006)):

◮ For one continuously distributed conditioning variable, M-NN
Matching is

√
n-consistent

◮ M-NN is in general not
√

n-consistent if the number of
continuous conditioning variables is large.

◮ The M-NN estimator does not achieve the semiparametric
efficiency bound

◮ The bootstrap for calculating the standard errors of the
matching estimator is not valid

◮ Abadie and Imbens (2006) provide an estimator for the large
sample variance of the M-NN Matching estimator
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Matching on Propensity Score

◮ Since conditioning on all relevant covariates is limited in the
case of a high dimensional vector X (’curse of
dimensionality’), Rosenbaum and Rubin (1983b) suggest the
use of so-called balancing scores b(X )

◮ One possible balancing score is the propensity score

◮ Instead of determining the closeness in terms of covariates we
can measure the closeness in term of estimated propensity
score
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Matching on Propensity Score

◮ Since conditioning on all relevant covariates is limited in the
case of a high dimensional vector X (’curse of
dimensionality’), Rosenbaum and Rubin (1983b) suggest the
use of so-called balancing scores b(X )

◮ One possible balancing score is the propensity score

◮ Instead of determining the closeness in terms of covariates we
can measure the closeness in term of estimated propensity
score

◮ Matching on the propensity score is essentially a weighting
scheme, which determines what weights are placed on
comparison units
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Matching on Propensity Score

Dehejia and Wahba states three issues arising when implementing
matching:

◮ whether or not to match with replacement,

◮ how many comparison units to match to each treated unit

◮ which matching method to choose
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Matching on Propensity Score

◮ Matching with replacement minimizes the propensity score
distance between the matched comparison units and the
treatment unit: Bias reduction

◮ matching without replacement, when there are few comparison
units similar to the treated units, we may be forced to match
treated units to comparison units that are quite different in
terms of the estimated propensity score. This increases bias,
but it could improve the precision of the estimates.

◮ An additional complication of matching without replacement
is that the results are potentially sensitive to the order in
which the treatment units are matched.
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Matching on Propensity Score

◮ By using more comparison units, one increases the precision of
the estimates, but at the cost of increased bias.

◮ m−nearest-neighbor method or caliper matching (comparison
units within a predefined propensity score radius)
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Matching on Propensity Score

◮ Let P = Pr(D = 1|X ).

◮ A typical propensity score matching estimator for ATT takes
the form

∆̂TT =
1

N1

∑

i∈I1∩Sp

{

Y1i − Ê[Y0i |Di = 1, Pi ]
}

,

where
Ê[Y0i |Di = 1, Pi ] =

∑

j∈I0

W (i , j)Y0j .

and where
◮ I1: set of program participants
◮ I0: set of non-participants
◮ Sp : region of common support.

◮ The weights W (i , j) depend on the distance between Pi and
Pj .
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M-Nearest Neighbor Matching

Let lk(i) be the index l ∈ I0 that satisfies

∑

j∈I0

1{‖ Pl − Pi ‖≤‖ Pj − Pi ‖} = m.

lm(i) is the index of the unit in the control group that is mth

closest to unit i in terms of the propensity score.
Let JM(i) denote the set of indices for the first K matches for unit
i :

JM(i) = {l1(i), ..., lM (i)}
The M-Nearest Neighbor Matching estimator (with replacement) is

∆̂NN
TT =

1

N1

∑

i∈I1







Y1i − 1

K

∑

j∈JK (i)

Y0j







.
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M-Nearest Neighbor Matching

Alternatively, the K-Nearest Neighbor Matching estimator (with
replacement) can be written as

∆̂NN
TT =

1

N1

∑

i∈I1∩Sp







Y1i −
∑

j∈I0

1{j ∈ JK (i)}
K

Y0j







.

⇒ WNN(i , j) = 1{j∈JK (i)}
K

with
∑

j∈I0
WNN(i , j) = 1.
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M-Nearest Neighbor Matching

◮ Abadie and Imbens (2008) show that the bootstrap is not in
general valid for matching estimators.

◮ Abadie and Imbens (2012) derive the large sample
asymptotics for propensity score matching estimator of ATE
and ATT with estimated propensity score

◮ They show that matching on the estimated propensity score is
more efficient than matching on the true propensity score in
large samples.

◮ The ATET estimator the sign of the adjustment term depends
on the data generating process

◮ ignoring the estimation error in the propensity score may lead
to confidence intervals that are either too large or too small.
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Stratification or Interval Matching

Method:

◮ In this variant of matching, the common support of P is
partitioned into a set of intervals.

◮ Average treatment impacts are calculated through simple
averaging within each interval.

◮ Overall average impact estimate:
◮ a weighted average of the interval impact estimates, using the

fraction of the D = 1 population in each interval for the
weights.

◮ Requires decision on how wide the intervals should be:
◮ Dehejia and Wahba (1999) use intervals that are selected such

that the mean values of the estimated Pi ’s and Pj ’s are not
statistically different from each other within intervals.
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Kernel Matching

The Kernel Matching estimator is defined as

∆̂KM
TT =

1

N1

∑

i∈I1∩Sp







Y1i −
∑

j∈I0

K (
Pj −Pi

h
)

∑N0
j=1 K (

Pj −Pi

h
)
Y0j







,

where K (.) is a ”Kernel Function” and h the bandwidth.

⇒ WKM(i , j) =
K(

Pj −Pi
h

)
∑N0

j=1
K(

Pj −Pi

h
)

with
∑

j∈I0
WKM(i , j) = 1.
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Kernel Matching

◮ Uses a weighted average of all observations within the
common support region: the farther away the comparison unit
is from the treated unit the lower the weight.

◮ The Kernel Matching estimator is formally defined as

∆̂KM
TT =

1

N1

∑

i∈I1∩Sp







Y1i −
∑

j∈I0

K (
Pj −Pi

h
)

∑N0
j=1 K (

Pj −Pi

h
)
Y0j







,

where K (.) is a ”Kernel Function” and h the bandwidth.

⇒ WKM(i , j) =
K(

Pj −Pi
h

)
∑N0

j=1
K(

Pj −Pi
h

)
with

∑

j∈I0
WKM(i , j) = 1.
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Kernel Matching

Table 2: Examples for Kernel Functions

Kernel Kernel Function K(z)

Uniform 1
2
1{|z| < 1}

Epanechnikov 3
4
(1 − z

2)1{|z| < 1}
Quartic 15

16
(1 − z

2)2
1{|z| < 1}

Gaussian (2π)− 1
2 exp(− z2

2
)

Kernel functions are

◮ positive and integrate to unity over the band.

◮ are symmetric around zero, so that points below x get the
same weight as those an equal distance above.

◮ are decreasing in the absolute value of its argument.
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Local Linear Matching

◮ Similar to the kernel estimator but includes a linear term in
the weighting function, which helps to avoid bias.

◮ A generalized version of Kernel Matching is Local Linear
Matching:

∆̂LLM
TT =

1

N1

∑

i∈I1∩Sp







Y1i −
∑

j∈I0

WLLM(i , j)Y0j







,

where

WLLM(j, i) =
Kij

∑N0

k=1 Kik(Pk − Pi )
2 − [Kij(Pj − Pi)][

∑N0

k=1 Kik(Pk − Pi)]
∑N0

j=1 Kij

∑N0

k=1 Kik(Pk − Pi )2 −
(

∑N0

k=1 Kik(Pk − Pi)
) .

and where Kij ≡ K (
Pj −Pi

h
). Again,

∑

j∈I0
WLLM(i , j) = 1.
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Local Linear Matching

Local regression interpretation of the Kernel and Local Linear
Matching Estimator:
Let

α̂, β̂ = arg min
α,β

∑

j∈I0

(Y0j − α − β(Pj − Pi))
2K (

Pj − Pi

h
).

Then α̂ =
∑

j∈I0
WLLM(i , j)Y0j .

If the locally weighted regression model includes only a constant
then

α̂ = arg min
α

∑

j∈I0

(Y0j − α)2K (
Pj − Pi

h
).

and α̂ =
∑

j∈I0
WKM(i , j)Y0j .
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Local Linear Matching

Asymptotic properties of KM and LLM (see Heckman, Ichimura
and Todd (1997)):

◮ KM and LLM are
√

n consistent and asymptotically normal
when matching is with respect to X , the known propensity
score or when the propensity score is estimated.

◮ KM- and LLM- estimators based on X or the known
propensity score achieve the semiparametric efficieny bound.

◮ The propensity score matching estimator does not necessarily
improve upon the variance of the matching estimator with
respect to X

◮ Using the estimated propensity score increases the asymptotic
variance due to the additional variability of the propensity
score estimation step
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Practical Guide to PSM

Caliendo and Kopeinig, Journal of Economic Surveys
(2008)

1. Propensity Score Estimation

2. Choose Matching Algorithm

3. Check Overlap/ Common Support

4. Matching Quality/Effect Estimation

5. Sensitivity Analysis
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1. Propensity Score Estimation

Two choices have to be made:

◮ the model to be used for the estimation
◮ For the binary treatment case, logit and probit models usually

yield similar results.
◮ Avoid LPM due to known reasons

◮ the variables to be included in this model.
◮ Variables should not be influenced by participation (or

anticipation) and must satisfy CIA

→ Economic issues Choose variables by economic theory and
previous empirical evidence

→ Statistical issues ’Hit or miss’ method, stepwise augmentation,
leave-one-out cross-validation

→ Key variables ’Overweighting’ by matching on subpopulations
or insisting on perfect match
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2. Choosing a Matching Algorithm

Matching
Algorithms

Nearest

Neighbour

Caliper and

Radius

Stratification

and Interval

Kernel and

Local Linear

With/out

replacement

M-NN

Weights for

M-NN

Max. tolerance

level (caliper)

1-NN only or

more (radius)

Number of

strata/intervals

Kernel func-

tions

Bandwidth

parameter
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Nearest Neighbour Matching

NN matching ’with replacement’ and ’without replacement’.

◮ Matching with replacement involves a trade-off between bias
and variance.

◮ ◮ If we allow replacement, the average quality of matching will
increase and the bias will decrease.

◮ replacement reduces the number of distinct nonparticipants
used to construct the counterfactual outcome and thereby
increases the variance of the estimator (Smith and Todd,
2005).

◮ A problem which is related to NN matching without
replacement is that estimates depend on the order in which
observations get matched.
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Nearest Neighbour Matching

◮ M-NN: This form of matching involves a trade-off between
variance and bias, too.

◮ It trades reduced variance, resulting from using more
information to construct the counterfactual for each
participant, with increased bias that results from on average
poorer matches (see e.g. Smith, 1997).

◮ When using oversampling, one has to decide how many
matching partners should be chosen for each treated
individual and which weight (e.g. uniform or triangular
weight) should be assigned to them.
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Caliper and Radius Matching

◮ M-NN matching faces the risk of bad matches if the closest
neighbour is far away.

◮ This can be avoided by imposing a tolerance level on the
maximum propensity score distance (caliper).

◮ Bad matches are avoided and the matching quality rises.

◮ However, if fewer matches can be performed, the variance of
the estimates increases.

◮ As Smith and Todd (2005) note, a possible drawback of
caliper matching is that it is difficult to know a priori what
choice for the tolerance level is reasonable.

◮ Dehejia and Wahba (2002) suggest a variant of caliper
matching which is called radius matching.

◮ The basic idea of this variant is to use not only the NN within
each caliper but all of the comparison members within the
caliper.
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Stratification and Interval Matching

◮ The idea of stratification matching is to partition the common
support of the propensity score into a set of intervals (strata)
and to calculate the impact within each interval by taking the
mean difference in outcomes between treated and control
observations.

◮ This method is also known as interval matching, blocking and
subclassification (Rosenbaum and Rubin, 1984).

◮ How many strata should be used in empirical analysis.

◮ Cochran (1968) shows that five subclasses

◮ One way to justify the choice of the number of strata is to
check the balance of the propensity score (or the covariates)
within each stratum (see e.g. Aakvik, 2001).
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Kernel and Local Linear Matching
◮ Kernel matching (KM) and local linear matching (LLM) are

nonparametric matching estimators that use weighted
averages of (nearly) all -depending on the choice of the kernel
function- individuals in the control group to construct the
counterfactual outcome.

◮ Advantage: lower variance, Disadvantage: higher bias
◮ KM can be seen as a weighted regression of the

counterfactual outcome on an intercept with weights given by
the kernel weights.

◮ The estimated intercept provides an estimate of the
counterfactual mean.

◮ KM and LLM is that the latter includes in addition to the
intercept a linear term in the propensity score of a treated
individual.

◮ This is an advantage whenever comparison group observations
are distributed asymmetrically around the treated observation,
e.g. at boundary points, or when there are gaps in the
propensity score distribution.31



Kernel and Local Linear Matching

◮ When applying KM one has to choose the kernel function and
the bandwidth parameter.

◮ Kernel function does not matter much

◮ bandwidth leads to bias-var trade off

◮ High bandwidth: lower variance but higher bias intercept
provides an estimate of the counterfactual mean.

◮ KM and LLM is that the latter includes in addition to the
intercept a linear term in the propensity score of a treated
individual.

◮ This is an advantage whenever comparison group observations
are distributed asymmetrically around the treated observation,
e.g. at boundary points, or when there are gaps in the
propensity score distribution.
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Trade-offs in Terms of Bias and Efficiency

Table 3: Trade-offs in Terms of Bias and Efficiency.

Decision Bias Variance

Nearest neighbour matching:
multiple neighbours/single neighbour (+)/(−) (−)/(+)
with caliper/without caliper (−)/(+) (+)/(−)

Use of control individuals:
with replacement/without replacement (−)/(+) (+)/(−)

Choosing method:
NN matching/Radius matching (−)/(+) (+)/(−)
KM or LLM/NN methods (+)/(−) (−)/(+)

Bandwidth choice with KM:
small/large (−)/(+) (+)/(−)

KM, kernel matching, LLM; local linear matching; NN, nearest neighbour;
increase; (+); decrease (−).

33



Overlap and Common Support

◮ Visual analysis of propensity score distributions

◮ Trimming as a way of sustaining common support:

1. The first trimming rule goes back to a suggestion by Dehejia &
Wahba (199). Let T ATE

i = 1(â < p̂i < b̂) setting b̂ to be the
mth largest propensity score in the control group and â to be
the mth smallest propensity score in the treatment group.
Then the estimators are computed based on the subsample for
which T ATE

i = 1. Usually m = 1.
2. In the second trimming rule suggested by Crump et al. (2009),

all units with an estimated propensity score outside the interval
[0.1; 0.9] for the ATE are discarded.

3. The third trimming method suggested by Imbens (2004) is
setting an upper bound on the relative weight of each unit.
We restrict the maximum relative weight by 4% as in Huber et
al. (2013).
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Figure 1: Overlap Plots with uniformly distributed X ’s

The graphs display estimated densities of conditional probabilities for treated (D=1, solid line) and control (D=0,

dashed line) groups where Xs are drawn from a uniform distribution. Treated to control ratio: 3 to 1
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Figure 2: Overlap Plots with uniformly distributed X ’s

The graphs display estimated densities of conditional probabilities for treated (D=1, solid line) and control (D=0,

dashed line) groups where Xs are drawn from a uniform distribution. Treated to control ratio: 1 to 1
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Figure 3: Overlap Plots with uniformly distributed X ’s

The graphs display estimated densities of conditional probabilities for treated (D=1, solid line) and control (D=0,

dashed line) groups where Xs are drawn from a uniform distribution. Treated to control ratio: 1 to 3
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Figure 4: Overlap Plots with normally distributed X ’s

The graphs display estimated densities of conditional probabilities for treated (D=1, solid line) and control (D=0,

dashed line) groups where X ’s are drawn from a normal distribution.
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Figure 5: Overlap Plots with normally distributed X ’s

The graphs display estimated densities of conditional probabilities for treated (D=1, solid line) and control (D=0,

dashed line) groups where X ’s are drawn from a normal distribution.
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Figure 6: Overlap Plots with normally distributed X ’s

The graphs display estimated densities of conditional probabilities for treated (D=1, solid line) and control (D=0,

dashed line) groups where X ’s are drawn from a normal distribution.
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Assessing the Matching Quality

◮ Standardized Bias: For each covariate X it is defined as the
difference of sample means in the treated and matched
control subsamples as a percentage of the square root of the
average of sample variances in both groups.

◮ t-Test

◮ Joint Significance and Pseudo-R2
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Sensitivity Analysis

◮ Rosenbaum (2002) and Aakvik (2001): The purpose of the
sensitivity analysis is to ask whether inferences about causal
effects may be altered by unobserved factors.

◮ Ichino et al. (2006): They derive point estimates of the ATT
under different possible scenarios of deviation from
unconfoundedness.
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